Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes

نویسندگان

  • Jonathan S. Weissman
  • Corinne M. Hohl
  • Oleg Kovalenko
  • Yechezkel Kashi
  • Shaoxia Chen
  • Kerstin Braig
  • Helen R. Saibil
  • Wayne A. Fenton
  • Arthur L. Norwich
چکیده

The chaperonin GroEL is a large, double-ring structure that, together with ATP and the cochaperonin GroES, assists protein folding in vivo. GroES forms an asymmetric complex with GroEL in which a single GroES ring binds one end of the GroEL cylinder. Cross-linking studies reveal that polypeptide binding occurs exclusively to the GroEL ring not occupied by GroES (trans). During the folding reaction, however, released GroES can rebind to the GroEL ring containing polypeptide (cis). The polypeptide is held tightly in a proteolytically protected environment in cis complexes, in the presence of ADP. Single turnover experiments with ornithine transcarbamylase reveal that polypeptide is productively released from the cis but not the trans complex. These observations suggest a two-step mechanism for GroEL-mediated folding. First, GroES displaces the polypeptide from its initial binding sites, sequestering it in the GroEL central cavity. Second, ATP hydrolysis induces release of GroES and productive release of polypeptide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes.

Although a cis mechanism of GroEL-mediated protein folding, occurring inside a hydrophilic chamber encapsulated by the co-chaperonin GroES, has been well documented, recently the GroEL-GroES-mediated folding of aconitase, a large protein (82 kDa) that could not be encapsulated, was described. This process required GroES binding to the ring opposite the polypeptide (trans) to drive release and p...

متن کامل

The effect of macromolecular crowding on chaperonin-mediated protein folding.

The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli. Recent studies in vitro demonstrated that GroES binding to GroEL causes the displacement of unfolded polypeptide into the central volume of the GroEL cavity for folding in a sequestrated environment. Resulting native protein leaves GroEL upon GroES release, whereas incompletely fol...

متن کامل

Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.

Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP...

متن کامل

GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state.

The GroEL/GroES reaction cycle involves steps of ATP and polypeptide binding to an open GroEL ring before the GroES encapsulation step that triggers productive folding in a sequestered chamber. The physiological order of addition of ATP and nonnative polypeptide, typically to the open trans ring of an asymmetrical GroEL/GroES/ADP complex, has been unknown, although there have been assumptions t...

متن کامل

Structure and function in GroEL-mediated protein folding.

Recent structural and biochemical investigations have come together to allow a better understanding of the mechanism of chaperonin (GroEL, Hsp60)-mediated protein folding, the final step in the accurate expression of genetic information. Major, asymmetric conformational changes in the GroEL double toroid accompany binding of ATP and the cochaperonin GroES. When a nonnative polypeptide, bound to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 83  شماره 

صفحات  -

تاریخ انتشار 1995